explanation.html 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
<!DOCTYPE html>
<html>
    <head>
        <script src="https://d3js.org/d3.v6.min.js"></script>
        <script type="text/javascript" id="data">data = {"generated_samples": [{"label": "0", "count": 412}, {"label": "1", "count": 322}], "training_samples": [{"label": "0", "count": 151}, {"label": "1", "count": 115}], "split": "Test x[5] > 0.5", "children": [{"branch": "\u2264 0.5", "generated_samples": [{"label": "0", "count": 534}, {"label": "1", "count": 310}], "training_samples": [{"label": "0", "count": 122}, {"label": "1", "count": 34}], "split": "Test x[4] > 1.55", "children": [{"branch": "\u2264 1.55", "generated_samples": [{"label": "0", "count": 588}, {"label": "1", "count": 291}], "training_samples": [{"label": "0", "count": 106}, {"label": "1", "count": 15}], "split": "Test x[20] > 0.5", "children": [{"branch": "\u2264 0.5", "generated_samples": [{"label": "0", "count": 579}, {"label": "1", "count": 386}], "training_samples": [{"label": "0", "count": 22}, {"label": "1", "count": 13}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.601}, {"label_id": 1, "label": 1, "value": 0.399}]}}, {"branch": "> 0.5", "generated_samples": [{"label": "0", "count": 602}, {"label": "1", "count": 312}], "training_samples": [{"label": "0", "count": 84}, {"label": "1", "count": 2}], "split": "Test x[4] > 1.45", "children": [{"branch": "\u2264 1.45", "generated_samples": [{"label": "0", "count": 616}, {"label": "1", "count": 299}], "training_samples": [{"label": "0", "count": 83}, {"label": "1", "count": 2}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.699}, {"label_id": 1, "label": 1, "value": 0.301}]}}, {"branch": "> 1.45", "generated_samples": [{"label": "0", "count": 560}, {"label": "1", "count": 439}], "training_samples": [{"label": "0", "count": 1}, {"label": "1", "count": 0}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.561}, {"label_id": 1, "label": 1, "value": 0.439}]}}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.686}, {"label_id": 1, "label": 1, "value": 0.314}]}}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.694}, {"label_id": 1, "label": 1, "value": 0.306}]}}, {"branch": "> 1.55", "generated_samples": [{"label": "0", "count": 523}, {"label": "1", "count": 442}], "training_samples": [{"label": "0", "count": 16}, {"label": "1", "count": 19}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.539}, {"label_id": 1, "label": 1, "value": 0.461}]}}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.656}, {"label_id": 1, "label": 1, "value": 0.344}]}}, {"branch": "> 0.5", "generated_samples": [{"label": "0", "count": 453}, {"label": "1", "count": 437}], "training_samples": [{"label": "0", "count": 29}, {"label": "1", "count": 81}], "split": "Test x[5] > 1.5", "children": [{"branch": "\u2264 1.5", "generated_samples": [{"label": "0", "count": 558}, {"label": "1", "count": 381}], "training_samples": [{"label": "0", "count": 19}, {"label": "1", "count": 42}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.577}, {"label_id": 1, "label": 1, "value": 0.423}]}}, {"branch": "> 1.5", "generated_samples": [{"label": "0", "count": 480}, {"label": "1", "count": 471}], "training_samples": [{"label": "0", "count": 10}, {"label": "1", "count": 39}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.49}, {"label_id": 1, "label": 1, "value": 0.51}]}}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.482}, {"label_id": 1, "label": 1, "value": 0.518}]}}], "model": {"estimate": [{"label_id": 0, "label": 0, "value": 0.563}, {"label_id": 1, "label": 1, "value": 0.437}]}};</script>
        <script type="text/javascript">/* Template for visualizing generalized decitsion trees

Licensed under the BSD 3-Clause License
Copyright (c) 2020, Yuriy Sverchkov
*/

// Global settings
const width = 954;
const node_width = 100;
const node_height = 100;

// Functions

// Tooltip event handlers
function t_mouseover(tooltip){
    return function (e, d) {

        // Clear prior contents
        tooltip.selectAll("*").remove();

        // Ugly sample listing
        if (d.data.training_samples) {
            const samples_table = tooltip.append("table");
            const samples_header = samples_table.append("thead")
                .style("font-weight", "bold")
                .append("tr");
            samples_header.append("td").text("counts");
            samples_header.selectAll("td.counts")
                .data(d.data.training_samples)
                .join("td").attr("class", "counts").text(d => d.label);
            const samples_tbody = samples_table.append("tbody");
            const training_row = samples_tbody.append("tr");
            training_row.append("td").style("font-weight", "bold").text("training");
            training_row.selectAll("td.counts")
                .data(d.data.training_samples)
                .join("td").attr("class", "counts").text(d => d.count);
            const gen_row = samples_tbody.append("tr");
            gen_row.append("td").style("font-weight", "bold").text("generated");
            gen_row.selectAll("td.counts")
                .data(d.data.generated_samples)
                .join("td").attr("class", "counts").text(d => d.count)
        }
    
        
        // Fill contents depending on node type
        if (d.children){
            // fetch split feature annotation
            if (d.data.feature_annotation){
                const lines = tooltip.selectAll("div")
                    .data(d.data.feature_annotation)
                    .join("div");
                lines.append("span").style("font-weight", "bold").text(d => d.annotation + ": ");
                lines.append("span").text(d => d.value);
            }
        } else {
            // TODO: contents for logistic leaves

            // Probability leaves:
            if (d.data.probabilities){
                const table = tooltip.append("table");
                //const header = table.append("thead").append("tr");
                //header.append("td");
                //header.append("td").text("probability");
                const rows = table.append("tbody")
                    .selectAll("tr")
                    .data(d.data.probabilities)
                    .join("tr");
                rows.append("td").style("font-weight", "bold").text(d => d.target + ":");
                rows.append("td").text(d => d.value);
            }
        }

        tooltip.style("visibility", "visible");
        
        return tooltip;
    }
}

function t_mouseout(tooltip){
    return () => tooltip.style("visibility", "hidden");
}

function t_mousemove(tooltip){
    return (e) => tooltip
        .style("left", (e.pageX + 20) + "px")
        .style("top", (e.pageY + 20) + "px");
}

// Compute the tree layout
function tree(data) {
    const root = d3.hierarchy(data);

    return d3.tree().size([width - node_width, root.height * 2 * node_height])(root);
}

// Backwards compatibility werapper
function draw_it(){
    d3.select("#drawing").append(() => draw_tree(data))
}

// Draw the tree
function draw_tree(data){
    
    const root = tree(data)

    // Figure out y limits
    let y0 = Infinity;
    let y1 = -Infinity;
    let x0 = Infinity;
    let x1 = -Infinity;
    root.each(d => {
        if (d.y > y1) y1 = d.y;
        if (d.y < y0) y0 = d.y;
        if (d.x > x1) x1 = d.x;
        if (d.x < x0) x0 = d.x;
    });

    const svg = d3.create("svg:svg")
        .attr("viewBox", [-node_width/2, -node_height/2, width, y1 - y0 + node_height]);
    
    // Create a legend in the top left
    const legend = svg.append("g")
        .attr("font-family", "sans-serif")
        .attr("font-size", 10);
    
    // Containing group for the tree
    const g = svg.append("g")
        .attr("font-family", "sans-serif")
        .attr("font-size", 10)
        .attr("transform", `translate(${0},${0})`);

    // Links are relevant only if data has children
    if (data.children) {
    
        // Draw link core
        const link = g.append("g")
            .attr("fill", "none")
            .attr("stroke", "black")
            .attr("stroke-opacity", 0.4)
            .attr("stroke-dasharray", ("5,3"))
            .attr("stroke-width", 0.5)
            .selectAll("path")
            .data(root.links())
            .join("path")
            .attr("d", d3.linkVertical()
                .x(d => d.x)
                .y(d => d.y));
        
        // Draw sample flow.
        // Total link width is limited by node width
        total_samples = 0
        // Hacky, to fix later
        targets = []
        data.children.forEach(function(child){
            if (child.training_samples) data.training_samples.forEach(function(label){
                total_samples += label.count;
                if (!targets.includes(label.label)) targets.push(label.label)
            })
            if (child.generated_samples) data.generated_samples.forEach(function(label){
                total_samples += label.count;
                if (!targets.includes(label.label)) targets.push(label.label)
            })
        })
        sample_scale = node_width / total_samples;

        // Link drawing is:
        // [dashed boundary, space
        // for k: training label k, space,
        // for k: generated label k, space
        // .. dashed boundary]
        const trace_generated = false;
        cosmetic_links = [];
        
        root.descendants().forEach(tree_node => {
            if (tree_node.children){
                let links = [];
                let source_offset = 0;
                //let source_counts = {'training': {}, 'generated': {}};
                //let children_counts = [];
                tree_node.children.forEach(child => {
                    let target_offset = 0;
                    let child_links = [];
                    if (child.data.training_samples)
                        child.data.training_samples.forEach(entry => {
                            let hw = entry.count * sample_scale / 2;
                            target_offset += hw;
                            source_offset += hw;
                            this_link = {
                                'label': entry.label,
                                'type': 'training',
                                'count': entry.count,
                                'width': entry.count * sample_scale,
                                'source': {
                                    'center_x': tree_node.x,
                                    'y': tree_node.y,
                                    'offset': source_offset
                                },
                                'target': {
                                    'center_x': child.x,
                                    'y': child.y,
                                    'offset': target_offset
                                }
                            }
                            cosmetic_links.push(this_link),
                            links.push(this_link)
                            child_links.push(this_link)
                            target_offset += hw + 1;
                            source_offset += hw + 1;
                        });
                    if (child.data.generated_samples && trace_generated)
                        child.data.generated_samples.forEach(entry => {
                            let hw = entry.count * sample_scale / 2;
                            target_offset += hw;
                            source_offset += hw;
                            this_link = {
                                'label': entry.label,
                                'type': 'generated',
                                'count': entry.count,
                                'width': entry.count * sample_scale,
                                'source': {
                                    'center_x': tree_node.x,
                                    'y': tree_node.y,
                                    'offset': source_offset
                                },
                                'target': {
                                    'center_x': child.x,
                                    'y': child.y,
                                    'offset': target_offset
                                }
                            }
                            cosmetic_links.push(this_link),
                            links.push(this_link)
                            child_links.push(this_link)
                            target_offset += hw + 1;
                            source_offset += hw + 1;
                        });
                    // Properly center links on target end
                    // Target width is target_offset
                    child_links.forEach(ln =>
                        ln.target.x = ln.target.center_x - target_offset / 2 + ln.target.offset)
                })

                // Properly center links on target end
                // Source width is source_offset
                links.forEach(ln =>
                    ln.source.x = ln.source.center_x - source_offset / 2 + ln.source.offset)
            }
        })

        // Draw bands
        g.append("g")
            .attr("fill", "none")
            .attr("stroke", "#555")
            .attr("stroke-opacity", 0.7)
            //.attr("stroke-dasharray", ("5,3"))
            .selectAll("path")
            .data(cosmetic_links)
            .join("path")
            .attr("stroke-width", d => d.width)
            .attr("d", d3.linkVertical()
                .x(d => d.x)
                .y(d => d.y));
        
        // Draw labels
        const linkLabel = g.append("g")
            .selectAll("text")
            .data(root.links())
            .join("text")
            .attr("dy", "0.31em")
            .attr("x", d => (d.source.x + d.target.x) / 2)
            .attr("y", d => (d.source.y + d.target.y) / 2)
            .attr("text-anchor", "middle")
            .text(d => d.target.data.branch)
            .clone(true).lower()
            .attr("stroke", "white");
    }

    const node = g.append("g")
        .attr("stroke-linejoin", "round")
        .attr("stroke-width", 3)
        .selectAll("g")
        .data(root.descendants())
        .join("g")
        .attr("transform", d => `translate(${d.x},${d.y})`);

    fillNodes(node, legend);

    // Tooltip
    const tooltip = d3.select('body').append('div')
        .attr("id", "tooltip")
        .style("position", "absolute")
        .style("visibility", "hidden")
        .style("background-color", "white")
        .style("border", "solid")
        .style("border-width", "1px")
        .style("border-radius", "5px")
        .style("font-family", "sans-serif")
        .style("font-size", "10pt")
        .style("padding", "5px");

    // Tooltip events
    node.on('mouseover', t_mouseover(tooltip))
        .on('mouseout', t_mouseout(tooltip))
        .on('mousemove', t_mousemove(tooltip));
    
    return svg.node();
}

// Function that dispatches different node filling calls
function fillNodes(nodeSelection, legend){

    fillSplitNodes(nodeSelection.filter(d => !!d.children))
    
    fillPNodes(nodeSelection.filter(d => !d.children && d.data.model.estimate), legend)

    fillLRNodes(nodeSelection.filter(d => !d.children && d.data.model.coefficients))
}

// Draws split nodes
function fillSplitNodes(nodeSelection){
    nodeSelection.append("circle")
        .attr("fill", "#555")
        .attr("r", 2.5);
    nodeSelection.append("text")
        .attr("dy", "0.31em")
        .attr("y", -6)
        .attr("text-anchor", "middle")
        .text(d => d.data.split)
        .clone(true).lower()
        .attr("stroke", "white");
}

// Draws probability leaf nodes
function fillPNodes(nodeSelection, legend){

    // Create scale on which targets are listed
    const targets = new Set();
    nodeSelection.data().forEach(d =>
        d.data.model.estimate.forEach(v => targets.add(v.label)))
    const color = d3.scaleOrdinal().domain(targets).range(d3.schemeCategory10)

    // Helpers
    const pie = d3.pie().sort(null).value(d => d.value)
    const arc = d3.arc().innerRadius(0).outerRadius(Math.min(node_height, node_width)/4)

    // Draw pie charts
    slices = nodeSelection.selectAll("path")
        .data(d => pie(d.data.model.estimate))
        .join("path")
        .attr("fill", d => color(d.data.label))
        .attr("stroke-width", "0.5")
        .attr("stroke", "white")
        .attr("d", arc)

    // Add pie slices to legend:
    // Some constants
    const legend_item_size = 12
    const legend_pieslice = d3.arc()
        .startAngle(0)
        .endAngle(Math.PI * 0.3)
        .innerRadius(0)
        .outerRadius(0.8 * legend_item_size)();
    // Get current legend height
    const legend_y = legend.node().getBBox().height;
    // Create legend section
    const legend_section = legend.append("g")
        .attr("transform", `translate(${0},${legend_y})`);
    legend_section.append("text")
        .attr("font-weight", "bold")
        .attr("text-anchor", "start")
        .text("Target");
    // Create legend items
    const legend_item = legend_section
        .selectAll("g")
        .data(targets)
        .join("g")
        .attr("transform", (d, i) =>
            `translate(${legend_item_size/3}, ${(i + 1.5) * legend_item_size})`);
    legend_item.append("path")
        .attr("fill", color)
        .attr("stroke-width", "0.5")
        .attr("stroke", "white")
        .attr("d", legend_pieslice);
    legend_item.append("text")
        .attr("dy", "-0.20em")
        .attr("dx", legend_item_size)
        .attr("text-anchor", "start")
        .text(d => d);
}

// Draws logistic leaf nodes
function fillLRNodes(nodeSelection){
    const r_height = 9;

    let min_v = 0;
    let max_v = 0;

    nodeSelection.data().forEach(function(d){
        d.data.model.coefficients.forEach(function(v){
            if (v.value < min_v) min_v = v.value;
            if (v.value > max_v) max_v = v.value;
        })
    })

    const bars_xscale = node_width / (max_v - min_v);
    const bars_xshift = 0 - (max_v + min_v) / 2;
    
    bars = nodeSelection.selectAll("g")
        .data(d => d.data.model.coefficients)
        .join("g")
        .attr("transform", function(d,i){
            return `translate(${bars_xshift},${i * r_height})`;
        });
    
    // Drawn bars
    bars.append("rect")
        .attr("fill", d => d.value < 0 ? "#900" : "#090")
        .attr("y", -r_height/2)
        .attr("height", r_height)
        .attr("x", d => d.value < 0 ? d.value * bars_xscale : 0)
        .attr("width", d => Math.abs(d.value) * bars_xscale)
    
    // Feature names (text)
    bars.append("text")
        .attr("dy", "0.31em")
        .attr("dx", d => d.value < 0 ? "0.31em" : "-0.31em")
        .attr("text-anchor", d => d.value < 0 ? "start" : "end")
        .text(d => d.label)
        .clone(true).lower()
        .attr("stroke", "white");

    // Coefficient values (text)
    bars.append("text")
        .attr("dy", "0.31em")
        .attr("dx", d => d.value < 0 ? "-0.31em" : "0.31em")
        .attr("text-anchor", d => d.value < 0 ? "end" : "start")
        .attr("x", d => d.value * bars_xscale)
        .attr("fill", d => d.value < 0 ? "#900" : "#090")
        .text(d => d.value.toExponential(3));
}</script>
    </head>
    <body>
        <div id="drawing"></div>
        <script>
            draw_it();
        </script>
    </body>
</html>