README.md 1.72 KB
Newer Older
1
# Business Intelligence & Analytics (EESYS-BIA-M)
Weigert, Andreas's avatar
Weigert, Andreas committed
2

3
4
5
6
This repository contains the R code and data for exercises of the course Business Intelligene & Analytics and is maintained by the chair of Information Systems and Energy Efficient Systems ([Dr. Konstantin Hopf](mailto:konstantin.hopf@uni-bamberg.de) and [Andreas Weigert](mailto:andreas.weigert@uni-bamberg.de)).

## Course details

Weigert, Andreas's avatar
Weigert, Andreas committed
7
For any details regarding the course, please visit the [Virtual Campus course page for the winter term 2020/21 ](https://vc.uni-bamberg.de/course/view.php?id=44960).
8
9
10
11
12
13
14
15
16

## Schedule (tentative)

**Important:** The Schedule and the scripts will change during the semester. Please check the updates in this GIT repository and the Virtual Campus course.

| Lecture | Topic | Script location(s) |
| ------- | ----- | ------------------ |
| L05 | Space and time in analytics | `Lecture_Scripts/BIA_L05_Geographic_Time_Data.Rmd` |
| L07 | Cluster analysis 2 | `Lecture_Scripts/BIA_L07_Clustering_SMD` |
Weigert, Andreas's avatar
Weigert, Andreas committed
17

18
19
20

| Tutorials | Topic | Script location(s) |
| --------- | ----- | ------------------ |
Weigert, Andreas's avatar
Weigert, Andreas committed
21
22
23
24
| T01-T03 | Introduction to R | `Tutorial_Scripts/RIntro/` |
| T05-T06 | Case study: Newsletter responses | `Tutorial_Scripts/Case_NewsletterResponses/` |
| T07-T08 | Case study: Electric Vehicle analysis | `Tutorial_Scripts/Case_ElectricVehicles/` |
| T09-T12 | Case study: Prediction for Energy Retailing `Tutorial_Scripts/Case_EnergyRetailAnalytics/` |
25
26
27
28
| T13 | Optimization and Decision Support | `Tutorial_Scripts/Optimization_DecisionSupport/`|

## Additional ressources

Hopf, Konstantin's avatar
Hopf, Konstantin committed
29
30
31
| Script location(s) | Description |
| ------------------ | ----------- |
| `Tutorial_Scripts/Case_AnnualPowerConsumption/` | Additional exercises regarding data preparation, outlier detection, data understanding |