This file is part of the lecture Business Intelligence & Analytics (EESYS-BIA-M), Information Systems and Energy Efficient Systems, University of Bamberg.
```{r Load libraries}
library(FSelector) #for feature selection
library(party) #for classification algorithm decision trees
library(class) #for classification algorithm kNN
library(e1071) #for classification algorithm SVM
library(randomForest) #further random forest
```
```{r Load and prepare data}
# Load data
load("../data/classification.RData")
# Derive and investigate the dependent variable "number of residents"
adults <- as.integer(ifelse(customers$residents.numAdult=="5 oder mehr",
"5",customers$residents.numAdult))
children <- as.integer(ifelse(customers$residents.numChildren=="5 oder mehr",